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Review of past work: chance-constrained DC OPF

CIGRE ’09: large unexpected fluctuations in wind power can
cause additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed – control difficult

A solution – expand transmission capacity! Difficult
(expensive), takes a long time

Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

“Fluctuations” – 15-minute timespan

Due to turbulence (“storm cut-off”)

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20− 30%

Many countries are getting into this regime
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Experiment

Bonneville Power Administration data, Northwest US

data on wind fluctuations at planned farms

with standard OPF, 7 lines exceed limit ≥ 8% of the time
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DC-OPF:

min c(p) (a quadratic)

s.t.

Bθ = p − d (1)

|βij(θi − θj)| ≤ uij for each line ij (2)

Pmin
g ≤ pg ≤ Pmax

g for each generator g (3)

Notation:

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n, (bus susceptance matrix)
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Proposed Control Mechanism

F = set of renewable sources, e.g. wind farms

∆ωj = real-time fluctuation in output of renewable j
(deviation from mean).

For each generator i , two parameters:

pi = mean output

αi = response parameter (“participation factor”)

Real-time output of generator i :

pi = pi − αi

∑
j

∆ωj

where ∑
i

αi = 1, α ≥ 0

∼ primary + secondary control, extends existing practice

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Modeling risk: line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised
and may ’trip’. But process is complex and time-averaged:

Thermal limit is most common

Thermal limit may be in terms of terminal equipment, not line itself

Wind strength and wind direction contributes to line temperature

IEEE Standard 738 computes line temperature as a function of
power flow and numerous exogenous parameters (wind,
temperature, humidity, air pressure, date, time of day, latitude and
longitude, ...)

In 2003 U.S. blackout event, many critical lines tripped due to
thermal reasons, but well short of their line limit

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Modeling risk: line limits and line tripping

summary: exceeding limit for too long is bad, but precise model
difficult

want: ”fraction time a line exceeds its limit is small”

proxy: prob(violation on line pq) < εpq

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d
+(µ+ w − α

∑
i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w

flow is a linear combination of bus power injections:

f ij = βij(θi − θj)

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Computing line flows

f ij = βij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

T w
)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

E f ij = βij(B
+
i − B+

j )T (p̄ − d + µ)

var(f ij) := s2
ij ≥ β2

ij

∑
k(Aik − Ajk)2σ2

k

(assuming independence)

and higher moments if necessary
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Chance constraints to deterministic constraints

chance constraint: P(f ij > f max
ij ) < εij and P(f ij < −f max

ij ) < εij

from moments of f ij, can get conservative approximations using e.g.
Chebyshev’s inequality

for Gaussian wind, can do better, since f ij is Gaussian :

|E f ij| + var(f ij)φ
−1 (1− εij) ≤ f max

ij

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Formulation:
Choose mean generator outputs and control to minimize expected cost,
with the probability of line overloads kept small.

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α, δn = 0∑
i∈G

pi +
∑
i∈F

µi =
∑
i∈D

di

f ij = βij(θi − θj),

Bθ = p + µ− d , θn = 0

s2
ij ≥ β2

ij

∑
k∈F

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij

A convex optimization problem.

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Summary of computational experience

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources
36625 variables
38507 constraints, 6242 conic constraints
128538 nonzeros, 87 dense columns

Solvers (Cplex, Gurobi) cannot solve problem

Specialized cutting-plane algorithm solves in ∼ 30 seconds on
normal computer

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Math

Conic constraint:

z ≥

√√√√ n∑
i=1

x2
i

x̃ ∈ Rn : a given vector

First-order approximation:

z ≥
∑n

i=1 x̃ixi√∑n
i=1 x̃2

i

Soon to appear in SIAM Review

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Need for robustness!

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α, δn = 0∑
i∈G

pi +
∑
i∈F

µi =
∑
i∈D

di

f ij = βij(θi − θj),

Bθ = p + µ− d , θn = 0

s2
ij ≥ β2

ij

∑
k∈F

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Robustness: what do we want

1 We do not want to go crazy

2 When data errors are big we want our solutions to degrade in
a controlled manner

3 When data errors are small we want our solutions to degrade
very little from nominal behavior

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Sensitivity to data errors?

s2
ij ≥ β2

ij

∑
k∈F

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij

(the f ij implicitly incorporate the µi)

What if the µi or the σk are incorrect? ... What happens to

Prob(f ij > f max
ij )?

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Let the correct parameters be µ̃i , σ̃i for each farm i .

Theorem: Suppose there are parameters M > 0, V > 0 such that

|µ̄i − µi | < Mµi and | σ̄2
i − σi | < Vσi

for all i . Then:

Prob(fij > f max
ij ) < εij + O(M) + O(V )

Here, the O() “hides” some constants dependent on e.g. reactances

In other words, solution quality degrades “gracefully”

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Robustness: small errors

Polyhedral data error model:

|σ̃2
i − σ2

i | ≤ γi ∀i ,
∑

i

|σ̃2
i − σ2

i |
γi

≤ Γ.

Ellipsoidal data error model:

(σ̃2 − σ2)TA(σ̃2 − σ2) ≤ b

Here A � 0 and b > 0 are parameters.

Bent, Backhaus, Bienstock, Chertkov Columbia University, LANL
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Robustifing chance constraints

Nominal case:

|E f ij| + var(f ij)φ
−1 (1− εij) ≤ f max

ij

→ a conic constraint

Robust case: maxE
{
|E f ij| + var(f ij)φ

−1 (1− εij)
}
≤ f max

ij

( E : data error model)

how to formulate?

s2
ij ≥ β2

ij

∑
k∈F

(B+
ik − B+

jk − δi + δj)
2σ2

k

s2
ij ≥ max

{σ2
k}∈E

β2
ij

∑
k∈F

(B+
ik − B+

jk − δi + δj)
2σ2

k
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How NOT to formulate: duality

Lemma: Let

U(γ, Γ) =

{
σ2 ∈ RF+ : |σ2

i − σ̄2
i | ≤ γi ∀i ∈ F ,

∑
i∈F

|σ2
i − σ̄2

i |
γi

≤ Γ

}
.

Then

s2
ij ≥ max

{σ2
k}∈U(γ,Γ)

β2
ij

∑
k∈F

(B+
ik − B+

jk − δi + δj)
2σ2

k (4)

is equivalent to:

sij ≥

[∑
k∈F

σ̄2
k(πik − πjk − δi + δj)

2 + Γa{i,j} +
∑
k∈F

b
{i,j}
k

]1/2

(πik − πjk − δi + δj)
2 − 1

γk
a{i,j} − b

{i,j}
k ≤ 0 ∀k ∈ F

b
{i,j}
k ≥ 0 ∀k ∈ F ; a{i,j} ≥ 0. NOT CONVEX!
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How NOT to formulate: duality

Lemma: Let

U(γ, Γ) =
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σ2 ∈ RF+ : |σ2

i − σ̄2
i | ≤ γi ∀i ∈ F ,
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i∈F

|σ2
i − σ̄2

i |
γi

≤ Γ

}
.
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s2
ij ≥ max

{σ2
k}∈U(γ,Γ)

β2
ij
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k∈F

(B+
ik − B+

jk − δi + δj)
2σ2

k (4)
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But the original constraint IS convex!

s2
ij ≥ max

{σ2
k}∈E

β2
ij

∑
k∈F

(B+
ik − B+

jk − δi + δj)
2σ2

k (5)

Algorithm.

1. Solve convex relaxation (initially: empty). Let δ∗ be optimal.

2. (For each line (i , j)) compute

max{σ2
k}∈E β

2
ij

∑
k∈F (B+

ik − B+
jk − δ∗i + δ∗j )2σ2

k

which is a convex problem in the above cases. Let {σ̂2} be optimal.

3. Linearize (5) around δ∗ and {σ̂2} (and add cut)
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Part II. Multi-time-step chance-constrained OPF

1 Covers multiple OPF planning intervals.

m > 1 intervals.

2 We will set the average operating point p̄
(h)
i for each generator i and

(end of) interval h. → This allows us to model generator ramping.

3 Each interval h split into K ≥ 1 sub-intervals.

4 Actual expected output of generator i at subinterval k of interval h:

p̄
(h,k)
i =

K − k

K − 1
p̄

(h)
i +

k − 1

K − 1
p̄

(h+1)
i

5 α
(h,k)
i = participation factor for generator i at subinterval k,

interval h. Could be α
(h)
i . Or even αi.

6 d
(h)
i = estimate for demand at bus i at interval h.
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Real-time power flow balance equation:

At (instantaneous) time t in subinterval k of interval h:

Bθ(h,k)(t) = p̄(h,k) + µ(h,k) − d (h) + ω(t)−

(∑
i

ωi(t)

)
α(h),

Random quantities in bold.

θ
(h,k)
i (t) = phase angle at bus i at time t.

Output at farm i = µ
(h,k)
i + ωi(t)

(Eωi(t) = 0, var(ωi(t)) = (σ
(h)
i )2)

Leads to conic formulation of multi-time-step
chance-constrained problem
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The value of reduced uncertainty

An imaginary situation:

The OPF dispatching periods are five minutes long; the
planning horizon spans a total of three hours (36 intervals).

A weather disturbance (a set of storm cells) is expected to
reach the geographical area under consideration at roughly the
two-hour mark (i.e. at h = 24). This disturbance will either
affect the northern or the southern sectors of the grid.

Which of the two cases takes place will be known by the 1.5
hour mark (i.e. at h = 18).

We can take advantage of the possibility of the recourse in the
formulation
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